Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 39, 2004 - Issue 4
65
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Surfactant-Enhanced Release of Carbaryl and Ethion from Two Long-Term Contaminated Soils

, &
Pages 565-576 | Received 27 Oct 2003, Published online: 24 Jun 2011
 

Abstract

The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L−1 of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.

Acknowledgments

We appreciate the support provided by Dr. Lukas Van Zwieten and Mr. Matthew Ayres of Wollongbar Agricultural Institute, NSW, Australia in collection of ethion-contaminated soil samples from old cattle tick dip site, and the Agricultural Extension staff at Mamoon Kanjan, Pakistan for assistance in collecting carbaryl-contaminated soil samples from a contaminated storage place. This work was carried out under the World Bank doctoral fellowship to RA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.