107
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

AN EXPERIMENT TO INVESTIGATE AMELIORATIVE EFFECTS OF POTASSIUM SULPHATE ON SALT AND ALKALINITY STRESSED VEGETABLE CROPS

, &
Pages 2545-2558 | Published online: 14 Feb 2007
 

ABSTRACT

Tomato (Lycopersicon esculentum) cultivar, Marilyn F1, cucumber (Cucumis sativus) cultivar, Seraset F1, and pepper (Capsicum annum) cultivar, Charliston 52, were grown in sand culture for five weeks to investigate the effect of supplementary potassium sulphate applied to the root zone at high NaCl (60 mM) and high pH (8.5). Treatments were (1) nutrient solution alone (C); (2) nutrient solution+3 mM K2SO4 applied to root zone (C+K); (3) nutrient solution+60 mmol NaCl (C+S); and (4) nutrient solution+60 mmol NaCl+3 mM K2SO4 applied to root zone (C+S+K). Two pH levels (5.5 or 8.5) were combined with the above treatments (C, C+K, C+S, and C+S+K). Supplementary 3 mM K2SO4 was added to nutrient solution for three weeks. The plants grown at high NaCl and high pH produced less dry matter and chlorophyll compared to control while the C+S+K treatment was intermediate in response between the control and NaCl treatment for all three species tested. Reductions in both dry matter and chlorophyll concentrations were greater for pepper than tomato and cucumber. The deleterious effect of high salinity on plant growth was more striking than that of high pH. Membrane permeability increased with addition of 60 mM NaCl and as the pH increased from 5.5 to 8.5. These increases were greatest for pepper. Supplementary K2SO4 decreased membrane permeability in all three species to levels not significantly different from the control values. Water use was decreased by salinity in cucumber and tomato but increased in pepper compared to control values. At high pH (8.5) water use increased in all treatments. Supplementary K (C+S+K) resulted in water use levels that were similar to or slightly higher than in the control. Sodium (Na) concentration in plant tissues increased for all three species in the elevated NaCl and pH treatments. Concentration of K was in the deficient range in the plants grown at high NaCl and supplementary K2SO4 application corrected this deficiency.

ACKNOWLEDGMENTS

Authors wish to thank University of Harran (Turkey) and University of Hertfordshire (UK) for their support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.