117
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Gyttja on Shoot Growth and Shoot Concentrations of Zinc and Boron of Wheat Cultivars Grown on Zinc‐Deficient and Boron‐Toxic Soil

, , &
Pages 869-881 | Published online: 24 Jun 2011
 

Abstract

Greenhouse experiments were carried out to study the influence of gyttja, a sedimentary peat, on the shoot dry weight and shoot concentrations of zinc (Zn) and boron (B) in one bread wheat (Triticum aestivum L., cv. Bezostaja) and one durum wheat (Triticum durum L., cv. Kiziltan) cultivar. Plants were grown in a Zn‐deficient (DTPA‐Zn: 0.09 mg kg−1 soil) and B‐toxic soil (CaCl2/mannitol‐extractable B: 10.5 mg kg−1 soil) with (+Zn = 5 mg Zn kg−1 soil) and without (−Zn = 0) Zn supply for 55 days. Gyttja containing 545 g kg−1 organic matter was applied to the soil at the rates of 0, 1, 2.5, 5, and 10% (w/w). When Zn and gyttja were not added, plants showed leaf symptoms of Zn deficiency and B toxicity, and had a reduced growth. With increased rates of gyttja application, shoot growth of both cultivars was significantly enhanced under Zn deficiency, but not at sufficient supply of Zn. The adverse effects of Zn deficiency and B toxicity on shoot dry matter production became very minimal at the highest rate of gyttja application. Increases in gyttja application significantly enhanced shoot concentrations of Zn in plants grown without addition of inorganic Zn. In Zn‐sufficient plants, the gyttja application up to 5% (w/w) did not affect Zn concentration in shoots, but at the highest rate of gyttja application there was a clear decrease in shoot Zn concentration. Irrespective of Zn supply, the gyttja application strongly decreased shoot concentration of B in plants, particularly in durum wheat. For example, in Zn‐deficient Kiziltan shoot concentration of B was reduced from 385 mg kg−1 to 214 mg kg−1 with an increased gyttja application. The results obtained indicate that gyttja is a useful organic material improving Zn nutrition of plants in Zn‐deficient soils and alleviating adverse effects of B toxicity on plant growth. The beneficial effects of gyttja on plant growth in the Zn‐deficient and B‐toxic soil were discussed in terms of increases in plant available concentration of Zn in soil and reduction of B uptake due to formation of tightly bound complexes of B with gyttja.

Acknowledgments

This study was supported by the Scientific and Technical Research Council of Turkey in the framework of the Turkish Agricultural Research Project (TARP).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.