397
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Selective Inhibition of Vascular Endothelial Growth Factor Receptor‐2 (VEGFR‐2) Identifies a Central Role for VEGFR‐2 in Human Aortic Endothelial Cell Responses to VEGF

, , , & , M.D., Ph.D.
Pages 239-254 | Published online: 10 Jul 2003
 

Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.