88
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Kinetic Studies on the Exchange of Bivalent Metal Ions on Amberlite IRC‐718—An Iminodiacetate Resin

, &
Pages 763-782 | Received 28 Jan 2003, Published online: 15 Feb 2007
 

Abstract

The rate of uptake of alkaline earth metals, copper, and lead have been investigated by a chelating ion exchange resin containing iminodiacetic acid as ligand attached to the copolymer of styrene and divinyl benzene of macroporous matrix structure. It binds alkaline earth metals, Cu, and Pb by the formation of chelate complexes with the carboxylate group of this resin. The experiments discussed in this work have allowed to establish the paramount importance of the presence of this chelating group in obtaining practically useful rates of metal ion uptake. The kinetic parameters like diffusion coefficient (D o), activation energies (ΔE a) and entropy of activation have been evaluated under the conditions favoring a particle diffusion control mechanism and the study followed the three models i.e., Nernst Planck, B t technique and Ash model. K d values in demineralised water (DMW) were found in the order Cu2+ > Pb2+ > Mg2+ > Sr2+ > Ba2+ > Ca2+.

Acknowledgment

The authors are thankful to The Director, National Metallurgical Laboratory, Jamshedpur, for his permission to publish the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.