10
Views
2
CrossRef citations to date
0
Altmetric
Original Article

High-frequency, depressing inhibition facilitates synchronization in globally inhibitory networks

&
Pages 647-672 | Received 19 Dec 2002, Accepted 26 Jun 2003, Published online: 09 Jul 2009
 

Abstract

Motivated by the study of sharp wave-associated ripples, high-frequency (∼200 Hz) extracellular field oscillations observed in the CA1 region of the rat hippocampus during slow-wave sleep and periods of behavioural immobility, we consider a single inhibitory neuron synapsing onto a network of uncoupled, excitatory neurons. The inhibitory synapse is depressing and has a small synaptic delay. Each excitatory cell provides instantaneous, positive feedback to the inhibitory cell. We show that the interneuron can rapidly synchronize the action potentials of the pyramidal cells if the frequency of inhibitory input is increased in a ramp-like manner as occurs during the ripple. We show that the basin of attraction of the synchronous solution is larger when the inhibition frequency is gradually increased as opposed to remaining constant.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.