84
Views
31
CrossRef citations to date
0
Altmetric
Original Article

Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network

, &
Pages 123-152 | Received 14 Mar 1997, Published online: 09 Jul 2009
 

Abstract

We study unsupervised Hebbian learning in a recurrent network in which synapses have a finite number of stable states. Stimuli received by the network are drawn at random at each presentation from a set of classes. Each class is defined as a cluster in stimulus space, centred on the class prototype. The presentation protocol is chosen to mimic the protocols of visual memory experiments in which a set of stimuli is presented repeatedly in a random way. The statistics of the input stream may be stationary, or changing. Each stimulus induces, in a stochastic way, transitions between stable synaptic states. Learning dynamics is studied analytically in the slow learning limit, in which a given stimulus has to be presented many times before it is memorized, i.e. before synaptic modifications enable a pattern of activity correlated with the stimulus to become an attractor of the recurrent network. We show that in this limit the synaptic matrix becomes more correlated with the class prototypes than with any of the instances of the class. We also show that the number of classes that can be learned increases sharply when the coding level decreases, and determine the speeds of learning and forgetting of classes in the case of changes in the statistics of the input stream.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.