693
Views
286
CrossRef citations to date
0
Altmetric
Original Articles

Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces

Pages 337-367 | Received 03 Dec 1993, Published online: 19 Aug 2006
 

Abstract

The small-slope approximation (SSA) for wave scattering at the rough interface of two homogeneous half-spaces is developed. This method bridges the gap between two classical approaches to the problem: the method of small perturbations and the Kirchhoff (or quasi-classical) approximation. In contrast to these theories, the SSA is applicable irrespective of the wavelength of radiation, provided that the slopes of roughness are small compared with the angles of incidence and scattering.

The resulting expressions for the SSA are given for the entries of an S-matrix that represents the scattering amplitudes of plane waves of different polarizations interacting with the rough boundary. These formulae are quite general and are valid, in fact, for waves of different origins. Apart from the shape of the boundary, some functions in these formulae are coefficients of the expansion of the S-matrix into a power series in terms of elevations. These roughness independent functions are determined by a specific scattering problem. In this paper they are calculated for the case of electromagnetic scattering at the interface of two dielectric half-spaces. In contrast to an earlier paper by the author, where only the formulae for the reflected field were presented, in this paper both reflected and transmitted fields are considered in detail.

The a priori symmetry relations that this scattering problem should obey (reciprocity and energy conservation) are formulated in terms of the S-matrix.

The statistical moments of scattering amplitudes are directly related to the mean-reflection coefficient and scattering cross sections, which are usually determined experimentally. The corresponding formulae are given here for the case of Gaussian space-homogeneous statistics of roughness.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.