79
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Sound emission by non-isomolar combustion at low Mach numbers

, &
Pages 423-428 | Received 05 Feb 1998, Published online: 19 Aug 2006
 

Abstract

This paper shows that the change in the number of moles of species during combustion can make a strong contribution to the acoustic power radiated by turbulent flames and cannot be systematically neglected. Starting from standard conservation equations, we derive an expression for the acoustic pressure radiated in the far field of a compact region of fluid where low Mach number non-isomolar combustion takes place. In this formulation, the contributions from ‘molar’ and thermal expansion appear explicitly. We also give a formulation in which the sound emission arising from purely non-stationary and from purely convective effects appear independently. As an application of the theory, we derive the acoustic power emitted by a premixed flame in the flamelet regime. Numerical evaluations show that the contribution of molar expansion to the acoustic power is between 2 and 5.6 dB (260% increase) for some common hydrocarbon-oxygen flames.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.