113
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Response of burner-stabilized flat flames to acoustic perturbations

, , , &
Pages 223-242 | Received 05 Jul 2001, Published online: 15 May 2007
 

Abstract

The response of burner-stabilized flat flames to acoustic velocity perturbations is studied numerically and analytically. The numerical setup involves the set of one-dimensional transport equations for the low-Mach number reacting flow using a simple and a more complex reaction mechanism. The physical background of the phenomena observed numerically is explained by a simple analytical model. The model uncouples the unsteady transport equations into two parts: the first part describes the flame motion through the G-equation and the second flamelet part describes the inner flame structure and mass burning rate of the flame. The G-equation can be solved exactly in the case of a quasi-steady flame structure. The mass burning rate is assumed to be directly related to the flame temperature. Relations for the fluctuating heat release and heat loss to the burner are derived, from which the coupling between the velocity fluctuations at both sides of the flame is found. Comparison of the numerical and analytical results with earlier work of McIntosh and with primary experimental results on a lean methane/air flame shows the validity of the models. The origin of the differences encountered is discussed. The resulting transfer function for the velocity perturbation can be applied to the acoustic stability analysis of combustion systems. The most interesting application is the acoustic behaviour of central heating boilers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.