247
Views
15
CrossRef citations to date
0
Altmetric
Miscellany

Asymptotic solutions in forced convection turbulent boundary layers

Article: N6 | Received 06 Sep 2002, Published online: 24 Jan 2011
 

Abstract

A similarity analysis has been developed for a 2D forced convection turbulent boundary layer with and without a pressure gradient. Two new inner and outer temperature scalings are derived by means of similarity analysis of the equations of motion. The new scalings will be verified by the experimental data with adverse pressure gradient, favourable pressure gradient and zero pressure gradient respectively. It will be shown that the mean temperature profiles are dependent on the external pressure gradient and the upstream conditions. However, using the new scaling in inner variables or in outer variables, the temperature profiles collapse into a single curve. Thus, the true asymptotic solution for the temperature field exists even at a finite Péclet number. These results are confirmed by using the existing experimental data and compared with the results from various scalings. The asymptotic temperature profile or the self-similar profile found in the present analysis is in agreement with the fact that an asymptotic velocity profile exists if the mean velocity deficit profile is normalized by the Zagarola and Smits scaling (Zagarola and Smits 1998 J. Fluid Mech. 373 33-79).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.