879
Views
25
CrossRef citations to date
0
Altmetric
Focus Papers

Structure and superconductivity of isotope-enriched boron-doped diamond

, , , , &
Article: 044210 | Received 19 Oct 2008, Accepted 10 Dec 2008, Published online: 28 Jan 2009
 

Abstract

Superconducting boron-doped diamond samples were synthesized with isotopes of 10B, 11B, 13C and 12C. We claim the presence of a carbon isotope effect on the superconducting transition temperature, which supports the ‘diamond-carbon’-related nature of superconductivity and the importance of the electron–phonon interaction as the mechanism of superconductivity in diamond. Isotope substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond to the vibrations of carbon atoms. The 500 cm−1 Raman band shifts with either carbon or boron isotope substitution and may be associated with vibrations of paired or clustered boron. The absence of a superconducting transition (down to 1.6 K) in diamonds synthesized in the Co–C–B system at 1900 K correlates with the small boron concentration deduced from lattice parameters.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grant 06-02-17480). Work at Los Alamos was performed under the auspices of the US DOE/Office of Science.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.