217
Views
68
CrossRef citations to date
0
Altmetric
Environmental Sciences

Biomechanical Effects of Trees on Soil and Regolith: Beyond Treethrow

&
Pages 233-247 | Received 01 Mar 2005, Accepted 01 Sep 2005, Published online: 15 Mar 2010
 

Abstract

Forest soils are profoundly influenced by the biomechanical as well as the chemical and biological effects of trees. Studies of biomechanical impacts have focused mainly on uprooting (treethrow), but this study shows that at least two other effects are significant: physical displacement of soil by root growth, and infilling of stump rot pits. Rocky soils in the Ouachita Mountains in Arkansas were studied because they allow for the use of rock fragments as a tracer of displacement. Rock fragments displaced by tree growth (baumsteins) are ubiquitous here, and displacement shows characteristic differences between pines and hardwoods. Hardwoods promote primarily lateral displacement, with a higher probability of displaced rock fragments eventually falling into stump holes. Pine displacement has a significant vertical component associated with basal mounding, and a lower probability of baumstein deposition in stump holes. Obvious stump holes are relatively rare, but the high ratio of stumps and snags to uprooted trees indicates that standing dead trees, which would ultimately result in a stump hole, are quite common. This, plus the presence of numerous duff-filled depressions, suggests that such holes are filled rapidly. The presence of surface-derived rock fragments and thick litter and duff accumulations indicate that at least some of the fill is external, as opposed to soil detachment from the pit walls. The primary influence of stump holes, as reflected by rock fragment distributions, is localized subsurface stone accumulations that do not extend laterally. The total area affected by uprooting is larger than that of stump holes, despite the lower frequency, due to the greater area of disturbance per event. Estimated turnover times (time for 100 percent of the forest floor to be affected) are shortest for soil displacement, intermediate for uprooting, and longest for stump hole effects. Although contemporary rates cannot be confidently extrapolated, the geomorphological efficacy of these processes is reflected by the fact that they are rapid enough to result in complete regolith turnover over time scales comparable to the Holocene. Displacement, stump holes, and uprooting help to maintain a continuously mixed surface biomantle, and may in some cases result in distinctive pedological features, local spatial variations in soil morphology, and divergent evolution of the soil cover.

Acknowledgments

Nathan Phillips assisted in the fieldwork, and the University of Kentucky Cartography Laboratory in the preparation of figures. This project was supported by USDA Forest Service Cooperative grant SRS 04-CA-11330124-140. Constructive critiques by Randy Schaetzl, Don Johnson, and David Butler resulted in substantial improvements.

Notes

1. The five unused sites are all mixed pine/hardwood sites where the Ouachita National Forest is attempting to restore pine/bluestem savanna communities by a combination of hardwood thinning and controlled burns. These were not included in the present study due to the recent disturbance associated with the thinning

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.