10
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A high‐resolution, gridded dataset for monthly temperature normals (1971‐2000) in sweden

, , &
Pages 249-261 | Received 01 Nov 2006, Accepted 01 May 2007, Published online: 15 Nov 2016
 

Abstract

A baseline climatology is required in evaluating climate variability and changes on regional and local scales. Gridded climate normals, i.e. averages over a 30‐year period, are of special interest since they can be readily used for validation of climate models. This study is aimed at creating an updated gridded dataset for Swedish monthly temperature normals over the period 1971–2000, based on standard 2‐m air temperature records at 510 stations in mainland Sweden. Spatial trends of the normal temperatures were modelled as functions of latitude, longitude and elevation by multiple linear regression. The study shows that the temperature normals are strongly correlated with latitude throughout the year and especially in cold months, while elevation was a more important factor in June and July. Longitude played a minor role and was only significant in April and May. Regression equations linking temperature to latitude, longitude and elevation were set up for each month. Monthly temperature normals were detrended by subtracting spatial trends given by the regressions. Ordinary kriging was then applied to both original data (simple method) and de‐trended data (composite method) to model the spatial variability and to perform spatial gridding. The multiple regressions showed that between 82% (summer) and 96% (winter) of the variance in monthly temperature normals could be explained by latitude and elevation. Unexplained variances, i.e. the residuals, were modelled with ordinary kriging with exponential semivariograms. The composite grid estimates were calculated by adding the multiple linear trends back to the interpolated residuals at each grid point. Kriged original temperature normals provided a performance benchmark. The cross–validation shows that the interpolation errors of the normals are significantly reduced if the composite method rather than the simple one was used. A gridded monthly dataset with 30‐arcsecond spacing was created using the established trends, the kriging model and a digital topographic dataset.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.