323
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Long-Term Effect of Nitrate Application from Lower Part of Roots on Nodulation and N2 Fixation in Upper Part of Roots of Soybean (Glycine max (L.) Merr.) in Two-Layered Pot Experiment

, , , , , , , , & show all
Pages 981-990 | Received 28 Apr 2005, Accepted 17 Oct 2005, Published online: 17 Dec 2010
 

Abstract

The long-term effect of the concentration and duration of application of nitrate from the lower part of soybean roots on the nodulation and nitrogen fixation in the upper part of roots was investigated using a two-layered pot system separating the upper roots growing in a vermiculite medium and the lower roots growing in a nutrient solution. Continuous absence of nitrate (hereafter referred to as “0–0 treatment”), and continuous 1 mM (1–1 treatment) and 5 mM (5–5 treatment) nitrate treatments were imposed in the lower pot from transplanting to the beginning of the maturity stage. In addition, 5 mM nitrate was supplied partially from the beginning of the pod stage till the beginning of the maturity stage (0–5 treatment) or from transplanting till the beginning of the pod stage (5–0 treatment). The values of the total plant dry weight and seed dry weight were highest in the 5–5 treatment, intermediate in the 1–1, 5–0, 0–5 treatments, and lowest in the 0–0 treatment. The values of the nodule dry weight and nitrogen fixation activity (acetylene reduction activity) were lowest in the 5–5 treatment. The value of the nodule dry weight in the upper roots was highest in the plants subjected to the 1–1 treatment and exceeded that in the 0–0 treatment. Total nitrogen fixation activity of the upper nodules per plant at the beginning of the pod stage was also highest in the 1–1 treatment. These results indicated that long-term supply of a low level of nitrate from the lower roots could promote nodulation and nitrogen fixation in the upper part of roots. Withdrawal of 5 mM nitrate after the beginning of the pod stage (5–0 treatment) markedly enhanced nodule growth and ARA per plant in the upper roots at the beginning of the maturity stage when the values of both parameters decreased in the other treatments. The nitrate concentration in the nodules attached to the upper roots was low, including the 5–5 treatment regardless of the stages of growth. This indicated that the inhibitory effect of 5 mM nitrate or promotive effect of 1 mM nitrate supplied from the lower roots was not directly controlled by nitrate itself, but was mediated by some systemic regulation, possibly by the C or/and N requirement of the whole plant.

Notes

To whom correspondence should be addressed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.