43
Views
126
CrossRef citations to date
0
Altmetric
Article

Regionally Specific and Genome-Wide Analyses Conclusively Demonstrate the Absence of CpG Methylation in Human Mitochondrial DNA

, , &
Pages 2683-2690 | Received 25 Feb 2013, Accepted 03 May 2013, Published online: 20 Mar 2023
 

Abstract

Although CpG methylation clearly distributes genome-wide in vertebrate nuclear DNA, the state of methylation in the vertebrate mitochondrial genome has been unclear. Several recent reports using immunoprecipitation, mass spectrometry, and enzyme-linked immunosorbent assay methods concluded that human mitochondrial DNA (mtDNA) has much more than the 2 to 5% CpG methylation previously estimated. However, these methods do not provide information as to the sites or frequency of methylation at each CpG site. Here, we have used the more definitive bisulfite genomic sequencing method to examine CpG methylation in HCT116 human cells and primary human cells to independently answer these two questions. We found no evidence of CpG methylation at a biologically significant level in these regions of the human mitochondrial genome. Furthermore, unbiased next-generation sequencing of sodium bisulfite treated total DNA from HCT116 cells and analysis of genome-wide sodium bisulfite sequencing data sets from several other DNA sources confirmed this absence of CpG methylation in mtDNA. Based on our findings using regionally specific and genome-wide approaches with multiple human cell sources, we can definitively conclude that CpG methylation is absent in mtDNA. It is highly unlikely that CpG methylation plays any role in direct control of mitochondrial function.

View publisher note:
Articles of Significant Interest Selected from This Issue by the Editors

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.00220-13.

ACKNOWLEDGMENTS

We thank M. R. Lieber and R. Mosteller for critical reading of the manuscript.

This work was partially supported by U.S. National Institutes of Health National Human Genome Research Institute grant R01 HG005238 (A.D.S.) and partially supported by a generous gift from J. Aresty and K. Aresty (C.-L.H).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.