60
Views
62
CrossRef citations to date
0
Altmetric
Article

Smad7 Promotes and Enhances Skeletal Muscle Differentiation

, , , &
Pages 6248-6260 | Received 03 Mar 2006, Accepted 01 Jun 2006, Published online: 27 Mar 2023
 

Abstract

Transforming growth factor β1 (TGF-β1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-β1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.

We thank J. Wrana and S. Dooley for the plasmids provided. We thank Nikky Soora and Hareem Ilyas for their technical assistance.

These studies were made possible by a grant from the Canadian Institutes of Health Research (CIHR) to J.C.M. Salary support for R.L.S.P. was in part provided by a postdoctoral fellowship from the Muscular Dystrophy Association of Canada (MDAC) and CIHR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.