31
Views
80
CrossRef citations to date
0
Altmetric
Article

Coordinated Recruitment of Histone Methyltransferase G9a and Other Chromatin-Modifying Enzymes in SHP-Mediated Regulation of Hepatic Bile Acid Metabolism

, , , , &
Pages 1407-1424 | Received 28 May 2006, Accepted 28 Nov 2006, Published online: 27 Mar 2023
 

Abstract

SHP has been implicated as a pleiotropic regulator of diverse biological functions by its ability to inhibit numerous nuclear receptors. Recently, we reported that SHP inhibits transcription of CYP7A1, a key gene in bile acid biosynthesis, by recruiting histone deacetylases (HDACs) and a Swi/Snf-Brm complex. To further delineate the mechanism of this inhibition, we have examined whether methylation of histones is also involved and whether a functional interplay between chromatin-modifying enzymes occurs. The histone methyltransferase G9a, but not SUV39, was colocalized with SHP in the nucleus and directly interacted with SHP in vitro. G9a, which was coimmunoprecipitated with hepatic SHP, methylated Lys-9 of histone 3 (H3K9) in vitro. Expression of G9a enhanced inhibition of CYP7A1 transcription by SHP, while a catalytically inactive G9a dominant negative (DN) mutant reversed the SHP inhibition. G9a was recruited to and H3K9 was methylated at the CYP7A1 promoter in a SHP-dependent manner in bile acid-treated HepG2 cells. Expression of the G9a-DN mutant inhibited H3K9 methylation, blocked the recruitment of the Brm complex, and partially reversed CYP7A1 inhibition by bile acids. Inhibition of HDAC activity with trichostatin A blocked deacetylation and methylation of H3K9 at the promoter, and, conversely, inhibition of H3K9 methylation by G9a-DN partially blocked deacetylation. Hepatic expression of G9a-DN in mice fed cholic acid disrupted bile acid homeostasis, resulting in increased bile acid pools and partial de-repression of Cyp7a1 and Cyp8b1. Our studies establish a critical role for G9a methyltransferase, histone deacetylases, and the Swi/Snf-Brm complex in the SHP-mediated inhibition of hepatic bile acid synthesis via coordinated chromatin modification at target genes.

We are grateful to Y. Nakatani and B. Vogelstein for generously providing the G9a antibody and Ad-Easy system, respectively. We thank K. Wright, C. Mizzen, M. Horwitz, M. Walsh, J. Chiang, Yoon-Kwang Lee, M. Evans, Y. Shinkai, J. Auwerx, T. Kuzarides, and I. Talianidis for kindly providing plasmids and reagents for this study. We also thank B. Kemper for helpful comments on the manuscript.

This study was supported by Swedish Research Council K2004-32X-14963-01A to E.T. and by NIH DK062777 and AHA 557772 to J.K.K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.