15
Views
19
CrossRef citations to date
0
Altmetric
Article

Functional Conservation of the Glutamine-Rich Domains of Yeast Gal11 and Human SRC-1 in the Transactivation of Glucocorticoid Receptor Tau 1 in Saccharomyces cerevisiae

, , &
Pages 913-925 | Received 27 Jun 2007, Accepted 14 Nov 2007, Published online: 27 Mar 2023
 

Abstract

The yeast Gal11 protein, a component of the Mediator complex, is required for the transcriptional activation of many class II genes as a physiological target of various activator proteins in vivo. In this study, we identified the yeast (Saccharomyces cerevisiae) Mediator complex as a novel coactivator of the transcriptional activity of the glucocorticoid receptor (GR) tau 1 (τ1), the major transcriptional activation domain of the GR. GR τ1 directly interacted with the Mediator complex in vivo and in vitro in a Gal11 module-dependent manner, and the Gal11p subunit interacted directly with GR τ1. Specific amino acid residues within the glutamine-rich (Qr) domain of Gal11p (residues 116 to 277) were essential for its interaction with GR τ1 and GR τ1 transactivity in yeast, as demonstrated by mutational analysis of the Gal11 Qr domain, which is highly conserved among human steroid receptor coactivator (SRC) proteins. A Gal11p variant, mini-Gal11p, comprised of the Mediator association and Qr domains of Gal11p or chimeric mini-Gal11p containing the Qr domain of SRC-1 could potentiate the GR τ1 transactivity in a gal11Δ yeast strain. These results suggest that there is functional conservation between Qr domains of yeast Gal11p and mammalian SRC proteins as direct targets of activator proteins in yeast.

ACKNOWLEDGMENTS

We are grateful to Young-Joon Kim, Fred Winston, Annika Wallberg, Stefan Björklund, Marian Carlson, and Richard Young for providing yeast strains, plasmids, and antibodies. We thank all of the previous and current members of Y.C.L.'s laboratory for sharing of materials and helpful discussions.

This work was supported by the grant from Korea Research Foundation (2006-005-J03003) to Y.C.L. G.S.K. is supported in part by the Second Stage BK21 program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.