57
Views
127
CrossRef citations to date
0
Altmetric
Article

The c-Myc-Regulated MicroRNA-17∼92 (miR-17∼92) and miR-106a∼363 Clusters Target hCYP19A1 and hGCM1 To Inhibit Human Trophoblast Differentiation

, , , &
Pages 1782-1796 | Received 05 Sep 2012, Accepted 17 Feb 2013, Published online: 20 Mar 2023
 

Abstract

Mononuclear cytotrophoblasts of the human placenta proliferate rapidly, subsequently fuse, and differentiate to form multinucleated syncytiotrophoblast with induction of aromatase (hCYP19A1) and chorionic gonadotropin (hCGβ) expression. Using microarray analysis, we identified members of the miR-17∼92 cluster and its paralogs, miR-106a∼363 and miR-106b∼25, that are significantly downregulated upon syncytiotrophoblast differentiation. Interestingly, miR-19b and miR-106a directly targeted hCYP19A1 expression, while miR-19b also targeted human GCM1 (hGCM1), a transcription factor critical for mouse labyrinthine trophoblast development. Overexpression of these microRNAs (miRNAs) impaired syncytiotrophoblast differentiation. hGCM1 knockdown decreased hCYP19A1 and hCGβ expression, substantiating its important role in human trophoblast differentiation. Expression of the c-Myc proto-oncogene was increased in proliferating cytotrophoblasts compared to that in differentiated syncytiotrophoblast. Moreover, c-Myc overexpression upregulated miR-17∼92 and inhibited hCYP19A1 and hCGβ expression. Binding of endogenous c-Myc to genomic regions upstream of the miR-17∼92 and miR-106a∼363 clusters in cytotrophoblasts dramatically decreased upon syncytiotrophoblast differentiation. Intriguingly, we observed higher levels of miR-106a and -19b and lower aromatase and hGCM1 expression in placentas from preeclamptic women than in placentas from gestation-matched normotensive women. Our findings reveal that c-Myc-regulated members of the miR-17∼92 and miR-106a∼363 clusters inhibit trophoblast differentiation by repressing hGCM1 and hCYP19A1 and suggest that aberrant regulation of these miRNAs may contribute to the pathogenesis of preeclampsia.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.01228-12.

ACKNOWLEDGMENTS

We gratefully acknowledge the expert assistance of Jo Francis Smith in isolation and culture of human placental cells.

This work was supported by NIH grant R01 DK031206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.