201
Views
162
CrossRef citations to date
0
Altmetric
Article

Molecular Architecture of Quartet MOZ/MORF Histone Acetyltransferase Complexes

, , , , , , , , , , , & show all
Pages 6828-6843 | Received 14 Aug 2008, Accepted 08 Sep 2008, Published online: 27 Mar 2023
 

Abstract

The monocytic leukemia zinc finger protein MOZ and the related factor MORF form tetrameric complexes with ING5 (inhibitor of growth 5), EAF6 (Esa1-associated factor 6 ortholog), and the bromodomain-PHD finger protein BRPF1, -2, or -3. To gain new insights into the structure, function, and regulation of these complexes, we reconstituted them and performed various molecular analyses. We found that BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6. An N-terminal region of BRPF1 interacts with the acetyltransferases; the enhancer of polycomb (EPc) homology domain in the middle part binds to ING5 and EAF6. The association of BRPF1 with EAF6 is weak, but ING5 increases the affinity. These three proteins form a trimeric core that is conserved from Drosophila melanogaster to humans, although authentic orthologs of MOZ and MORF are absent in invertebrates. Deletion mapping studies revealed that the acetyltransferase domain of MOZ/MORF is sufficient for BRPF1 interaction. At the functional level, complex formation with BRPF1 and ING5 drastically stimulates the activity of the acetyltransferase domain in acetylation of nucleosomal histone H3 and free histones H3 and H4. An unstructured 18-residue region at the C-terminal end of the catalytic domain is required for BRPF1 interaction and may function as an “activation lid.” Furthermore, BRPF1 enhances the transcriptional potential of MOZ and a leukemic MOZ-TIF2 fusion protein. These findings thus indicate that BRPF proteins play a key role in assembling and activating MOZ/MORF acetyltransferase complexes.

View correction statement:
Molecular Architecture of Quartet MOZ/MORF Histone Acetyltransferase Complexes

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

ACKNOWLEDGMENTS

We thank Issay Kitabayashi, David M. Heery, Peter Cockerill, Yoshiaki Ito, Gerard Karsenty, and Stefano Stifani for kindly providing reporter and expression plasmids.

This work was supported by operating grants from the Canadian Institutes of Health Research (to J.C.) and the Canadian Cancer Society (to X.-J.Y.).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.