34
Views
85
CrossRef citations to date
0
Altmetric
Article

Cooperative-Binding and Splicing-Repressive Properties of hnRNP A1

&
Pages 5620-5631 | Received 29 Oct 2008, Accepted 30 Jul 2009, Published online: 21 Mar 2023
 

Abstract

hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3′ end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3′-to-5′ direction. As hnRNP A1 propagates toward the 5′ end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3′ splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5′-to-3′ direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3′-to-5′ direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

ACKNOWLEDGMENTS

We thank Michele Hastings, Zuo Zhang, and Qingshuo Zhang for generous gifts of recombinant proteins and Mads Jensen, Olga Anczuków-Camarda, Isabel Aznarez, and Yimin Hua for helpful comments on the manuscript.

This work was supported by grant CA13106 from the NCI.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.