213
Views
260
CrossRef citations to date
0
Altmetric
Minireview

Occludin: One Protein, Many Forms

Pages 242-250 | Published online: 20 Mar 2023
 

Abstract

Intercellular tight junctions (TJs) exhibit a complex molecular architecture involving the regulated cointeraction of cytoplasmic adaptor proteins (e.g., zonula occludens) and integral membrane linker proteins (e.g., occludin and claudins). They provide structural integrity to epithelial and endothelial tissues and create highly polarized barriers essential to homeostatic maintenance within vertebrate physiological systems, while their dysregulation is an established pathophysiological hallmark of many diseases (e.g., cancer, stroke, and inflammatory lung disease). The junctional complex itself is a highly dynamic signaling entity wherein participant proteins constantly undergo a blend of regulatory modifications in response to diverse physiological and pathological cues, ultimately diversifying the overall adhesive properties of the TJ. Occludin, a 65-kDa tetraspan integral membrane protein, contributes to TJ stabilization and optimal barrier function. This paper reviews our current knowledge of how tissue occludin is specifically modified at the posttranscriptional and posttranslational levels in diverse circumstances, with associated consequences for TJ dynamics and epithelial/endothelial homeostasis. Mechanistic concepts such as splice variance and alternate promoter usage, proteolysis, phosphorylation, dimerization, and ubiquitination are comprehensively examined, and possible avenues for future investigation highlighted.

ACKNOWLEDGMENTS

I acknowledge financial support provided through Science Foundation Ireland (04/BR/B0421, BICF708), the Irish Research Council for Science, Engineering & Technology (IRCSET ID 493, October 2006), and the Irish Higher Education Authority Programme for Research in Third Level Institutes (HEA-PRTLI Cycle 4: T3 Targeted Therapeutics & Theranostics).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.