4
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Proteolytic Disruption of Laminin-Integrin Complexes on Muscle Cells during Synapse Formation

, &
Pages 4972-4984 | Received 21 Mar 1996, Accepted 18 Jun 1996, Published online: 29 Mar 2023
 

Abstract

To explore whether a neural modulation of muscle integrins’ extracellular ligand interactions contributes to synapse induction, we compared the distributions of β1-integrins and basal lamina proteins on Xenopus myotomal myocytes developing in culture. β1-Integrins formed numerous organized aggregates scattered over the entire muscle surface, with particularly dense accumulations at specialized sites resembling myotendinous and neuromuscular junctions. Integrin aggregates on muscle cells differed from those on surrounding fibroblasts and epithelial cells, both in their lack of response to cross-linking by multivalent ligands and in their consistent association with the cells’ own extracellular matrices. Muscle integrin clusters were usually associated with congruent basal lamina accumulations containing laminin and a heparan sulfate proteoglycan (HSPG), sometimes including fibronectin and vitronectin acquired from the surrounding medium. Immediately prior to synaptic differentiation, any existing laminin and HSPG accumulations along the path of cell contact were eliminated, disrupting otherwise stable laminin-integrin complexes. This apparently proteolytic modulation of integrins’ extracellular ligand interactions was soon followed by the accumulation of new congruent accumulations of laminin and HSPG in the developing synaptic basal lamina. Combining these results with earlier findings, we consider the possibility that postsynaptic differentiation is induced, at least in part, by the proteolytic disruption of integrin-ligand complexes at sites of nerve-muscle contact.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.