26
Views
138
CrossRef citations to date
0
Altmetric
Research Article

Self-Association of the Single-KH-Domain Family Members Sam68, GRP33, GLD-1, and Qk1: Role of the KH Domain

, , , &
Pages 5707-5718 | Received 14 Mar 1997, Accepted 23 Jul 1997, Published online: 29 Mar 2023
 

Abstract

Sam68 is a member of a growing family of proteins that contain a single KH domain embedded in a larger conserved domain of ~170 amino acids. Loops 1 and 4 of this KH domain family are longer than the corresponding loops in other KH domains and contain conserved residues. KH domains are protein motifs that are involved in RNA binding and are often present in multiple copies. Here we demonstrate by coimmunoprecipitation studies that Sam68 self-associated and that cellular RNA was required for the association. Deletion studies demonstrated that the Sam68 KH domain loops 1 and 4 were required for self-association. The Sam68 interaction was also observed in Saccharomyces cerevisiae by the two-hybrid system. In situ chemical cross-linking studies in mammalian cells demonstrated that Sam68 oligomerized in vivo. These Sam68 complexes bound homopolymeric RNA and the SH3 domains of p59fyn and phospholipase Cγ1 in vitro, demonstrating that Sam68 associates with RNA and signaling molecules as a multimer. The formation of the Sam68 complex was inhibited by p59fyn, suggesting that tyrosine phosphorylation regulates Sam68 oligomerization. Other Sam68 family members including Artemia salina GRP33, Caenorhabditis elegans GLD-1, and mouse Qk1 also oligomerized. In addition, Sam68, GRP33, GLD-1, and Qk1 associated with other KH domain proteins such as Bicaudal C. These observations indicate that the single KH domain found in the Sam68 family, in addition to mediating protein-RNA interactions, mediates protein-protein interactions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.