16
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Aberrant Ras Regulation and Reduced p190 Tyrosine Phosphorylation in Cells Lacking p120-Gap

, , &
Pages 1840-1847 | Received 09 Jul 1996, Accepted 29 Dec 1996, Published online: 29 Mar 2023
 

Abstract

The Ras guanine nucleotide-binding protein functions as a molecular switch in signalling downstream of protein-tyrosine kinases. Ras is activated by exchange of GDP for GTP and is turned off by hydrolysis of bound GTP to GDP. Ras itself has a low intrinsic GTPase activity that can be stimulated by GTPase-activating proteins (GAPs), including p120-Gap and neurofibromin. These GAPs possess a common catalytic domain but contain distinct regulatory elements that may couple different external signals to control of the Ras pathway. p120-Gap, for example, has two N-terminal SH2 domains that directly recognize phosphotyrosine motifs on activated growth factor receptors and cytoplasmic phosphoproteins. To analyze the role of p120-Gap in Ras regulation in vivo, we have used fibroblasts derived from mouse embryos with a null mutation in the gene for p120-Gap (Gap). Platelet-derived growth factor stimulation of Gap−/− cells led to an abnormally large increase in the level of Ras-GTP and in the duration of mitogen-activated protein (MAP) kinase activation compared with wild-type cells, suggesting that p120-Gap is specifically activated following growth factor stimulation. Induction of DNA synthesis in response to platelet-derived growth factor and morphological transformation by the v-src and EJ-ras oncogenes were not significantly affected by the absence of p120-Gap. However, we found that normal tyrosine phosphorylation of p190-rhoGap, a cytoplasmic protein that associates with the p120-Gap SH2 domains, was dependent on the presence of p120-Gap. Our results suggest that p120-Gap has specific functions in downregulating the Ras/MAP kinase pathway following growth factor stimulation, and in modulating the phosphorylation of p190-rhoGap, but is not required for mitogenic signalling.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.