14
Views
262
CrossRef citations to date
0
Altmetric
Research Article

Modulation of the Fate of Cytoplasmic mRNA by AU-Rich Elements: Key Sequence Features Controlling mRNA Deadenylation and Decay

, &
Pages 4611-4621 | Received 07 Feb 1997, Accepted 14 May 1997, Published online: 29 Mar 2023
 

Abstract

Regulation of cytoplasmic deadenylation has a direct impact on the fate of mRNA and, consequently, its expression in the cytoplasm. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. AREs direct accelerated deadenylation as the first step in mRNA turnover. Recently we have proposed that AREs can be divided into three different classes. mRNAs bearing either the class I AUUUA-containing ARE or the class III non-AUUUA ARE display synchronous poly(A) shortening, whereas class II ARE-containing mRNAs are deadenylated asynchronously, with the formation of poly(A) intermediates. In this study, we have systematically characterized the deadenylation kinetics displayed by various AREs and their mutant derivatives. We find that a cluster of five or six copies of AUUUA motifs in close proximity forming various degrees of reiteration is the key feature that dictates the choice between processive versus distributive deadenylation. An AU-rich region 20 to 30 nucleotides long immediately 5′ to this cluster of AUUUA motifs can greatly enhance the destabilizing ability of the AUUUA cluster and is, therefore, an integral part of the class I and class II AREs. These two features are the defining characteristics of class II AREs. Our results are consistent with the interpretation that the pentanucleotide AUUUA, rather than the nonamer UUAUUUA(U/A)(U/A), is both an essential and the minimal sequence motif of AREs. Our study provides the groundwork for future characterization of ARE-binding proteins identified by in vitro gel shift assays in order to stringently define their potential role in the ARE-mediated decay pathway. Moreover, transformation of deadenylation kinetics from one type to the other by mutations of AREs implies the existence of cross talk between the ARE and 3′ poly(A) tail, which dictates the decay kinetics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.