11
Views
105
CrossRef citations to date
0
Altmetric
Research Article

Evidence for a Role for Galectin-1 in Pre-mRNA Splicing

, , &
Pages 4730-4737 | Received 18 Feb 1997, Accepted 23 May 1997, Published online: 29 Mar 2023
 

Abstract

Galectins are a family of β-galactoside-binding proteins that contain characteristic amino acid sequences in the carbohydrate recognition domain (CRD) of the polypeptide. The polypeptide of galectin-1 contains a single domain, the CRD. The polypeptide of galectin-3 has two domains, a carboxyl-terminal CRD fused onto a proline- and glycine-rich amino-terminal domain. In previous studies, we showed that galectin-3 is a required factor in the splicing of nuclear pre-mRNA, assayed in a cell-free system. We now document that (i) nuclear extracts derived from HeLa cells contain both galectins-1 and -3; (ii) depletion of both galectins from the nuclear extract either by lactose affinity adsorption or by double-antibody adsorption results in a concomitant loss of splicing activity; (iii) depletion of either galectin-1 or galectin-3 by specific antibody adsorption fails to remove all of the splicing activity, and the residual splicing activity is still saccharide inhibitable; (iv) either galectin-1 or galectin-3 alone is sufficient to reconstitute, at least partially, the splicing activity of nuclear extracts depleted of both galectins; and (v) although the carbohydrate recognition domain of galectin-3 (or galectin-1) is sufficient to restore splicing activity to a galectin-depleted nuclear extract, the concentration required for reconstitution is greater than that of the full-length galectin-3 polypeptide. Consistent with these functional results, double-immunofluorescence analyses show that within the nucleus, galectin-3 colocalizes with the speckled structures observed with splicing factor SC35. Similar results are also obtained with galectin-1, although in this case, there are areas of galectin-1 devoid of SC35 and vice versa. Thus, nuclear galectins exhibit functional redundancy in their splicing activity and partition, at least partially, in the nucleoplasm with another known splicing factor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.