8
Views
56
CrossRef citations to date
0
Altmetric
Cell Growth and Development

A Ras-Dependent Pathway Regulates RNA Polymerase II Phosphorylation in Cardiac Myocytes: Implications for Cardiac Hypertrophy

, , , , &
Pages 6729-6736 | Received 23 Apr 1998, Accepted 04 Aug 1998, Published online: 28 Mar 2023
 

ABSTRACT

Despite extensive evidence implicating Ras in cardiac muscle hypertrophy, the mechanisms involved are unclear. We previously reported that Ras, through an effector-like function of Ras GTPase-activating protein (GAP) in neonatal cardiac myocytes (M. Abdellatif et al., J. Biol. Chem. 269:15423–15426, 1994; M. Abdellatif and M. D. Schneider, J. Biol. Chem. 272:527–533, 1997), can up-regulate expression from a comprehensive set of promoters, including both cardiac cell-specific and constitutive ones. To investigate the mechanism(s) underlying these earlier findings, we have used recombinant adenoviruses harboring a dominant negative Ras (17N Ras) allele or the N-terminal domain of GAP (nGAP), responsible for the Ras-like effector function. Inhibition of endogenous Ras reduced basal levels of [3H]uridine and [3H]phenylalanine incorporation into total RNA, mRNA, and protein, with parallel changes in apparent cell size. In addition, 17N Ras markedly inhibited phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (pol II), known to regulate transcript elongation, accompanied by down-regulation of its principal kinase, cyclin-dependent kinase 7 (Cdk7). In contrast, nGAP elicited the opposite effects on each of these parameters. Furthermore, cotransfection of constitutively active Ras (12R Ras) with wild-type pol II, rather than a truncated mutant lacking the CTD, demonstrated that Ras activation of transcription was dependent on the pol II CTD. Consistent with a potential role for this pathway in the development of cardiac myocyte hypertrophy, α1-adrenergic stimulation similarly enhanced pol II phosphorylation and Cdk7 expression, where both effects were inhibited by dominant negative Ras, while pressure overload hypertrophy led to an increase in both hyperphosphorylated and hypophosphorylated pol II in addition to Cdk7.

ACKNOWLEDGMENTS

We thank J. Corden for providing plasmids, F. Ervin for technical assistance, R. MacLellan for comments and suggestions, and R. Roberts for encouragement and support.

This work was supported in part by American Heart Association grant 96G-1175, Baylor Junior Faculty Seed Funding, and a Chao fellowship to M. Abdellatif and by National Institutes of Health grants R01 HL47567, R01 HL52555, P01 HL49953, and P50 HL42267 to M. D. Schneider.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.