6
Views
36
CrossRef citations to date
0
Altmetric
Gene Expression

Snt309p, a Component of the Prp19p-Associated Complex That Interacts with Prp19p and Associates with the Spliceosome Simultaneously with or Immediately after Dissociation of U4 in the Same Manner as Prp19p

, , , , &
Pages 2196-2204 | Received 29 Sep 1997, Accepted 23 Dec 1997, Published online: 27 Mar 2023
 

ABSTRACT

The yeast protein Prp19p is essential for pre-mRNA splicing and is associated with the spliceosome concurrently with or just after dissociation of U4 small nuclear RNA. In splicing extracts, Prp19p is associated with several other proteins in a large protein complex of unknown function, but at least one of these proteins is also essential for splicing (W.-Y. Tarn, C.-H. Hsu, K.-T. Huang, H.-R. Chen, H.-Y. Kao, K.-R. Lee, and S.-C. Cheng, EMBO J. 13:2421–2431, 1994). To identify proteins in the Prp19p-associated complex, we have isolatedtrans-acting mutations that exacerbate the phenotypes of conditional alleles of prp19, using the ade2-ade3 sectoring system. A novel splicing factor, Snt309p, was identified through such a screen. Although the SNT309 gene was not essential for growth ofSaccharomyces cerevisiae under normal conditions, yeast cells containing a null allele of the SNT309 gene were temperature sensitive and accumulated pre-mRNA at the nonpermissive temperature. Far-Western blot analysis revealed direct interaction between Prp19p and Snt309p. Snt309p was shown to be a component of the Prp19p-associated complex by Western blot analysis. Immunoprecipitation studies demonstrated that Snt309p was also a spliceosomal component and associated with the spliceosome in the same manner as Prp19p during spliceosome assembly. These results suggest that the functions of Prp19p and Snt309p in splicing may require coordinate action of these two proteins.

ACKNOWLEDGMENTS

We thank G. Fink and C. Holm for providing strains and plasmids for the ade2-ade3 sectoring system and M. F. Tam for synthesizing oligonucleotides and peptides. We also thank M.-Y. Cheng and W.-Y. Tarn for reading the manuscript.

This work was supported by a grant from Academia Sinica and by National Science Council grant NSC85-2311-B-001-033 to S.-C.C. and by a CNRS grant to J.B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.