81
Views
309
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Catenin p120ctn Interacts with Kaiso, a Novel BTB/POZ Domain Zinc Finger Transcription Factor

&
Pages 3614-3623 | Received 01 Dec 1998, Accepted 24 Feb 1999, Published online: 28 Mar 2023
 

Abstract

p120ctn is an Armadillo repeat domain protein with structural similarity to the cell adhesion cofactors β-catenin and plakoglobin. All three proteins interact directly with the cytoplasmic domain of the transmembrane cell adhesion molecule E-cadherin; β-catenin and plakoglobin bind a carboxy-terminal region in a mutually exclusive manner, while p120 binds the juxtamembrane region. Unlike β-catenin and plakoglobin, p120 does not interact with α-catenin, the tumor suppressor adenomatous polyposis coli (APC), or the transcription factor Lef-1, suggesting that it has unique binding partners and plays a distinct role in the cadherin-catenin complex. Using p120 as bait, we conducted a yeast two-hybrid screen and identified a novel transcription factor which we named Kaiso. Kaiso’s deduced amino acid sequence revealed an amino-terminal BTB/POZ protein-protein interaction domain and three carboxy-terminal zinc fingers of the C2H2 DNA-binding type. Kaiso thus belongs to a rapidly growing family of POZ-ZF transcription factors that include the Drosophila developmental regulators Tramtrak and Bric à brac, and the human oncoproteins BCL-6 and PLZF, which are causally linked to non-Hodgkins’ lymphoma and acute promyelocytic leukemia, respectively. Monoclonal antibodies to Kaiso were generated and used to immunolocalize the protein and confirm the specificity of the p120-Kaiso interaction in mammalian cells. Kaiso specifically coprecipitated with a variety of p120-specific monoclonal antibodies but not with antibodies to α- or β-catenin, E-cadherin, or APC. Like other POZ-ZF proteins, Kaiso localized to the nucleus and was associated with specific nuclear dots. Yeast two-hybrid interaction assays mapped the binding domains to Arm repeats 1 to 7 of p120 and the carboxy-terminal 200 amino acids of Kaiso. In addition, Kaiso homodimerized via its POZ domain but it did not heterodimerize with BCL-6, which heterodimerizes with PLZF. The involvement of POZ-ZF proteins in development and cancer makes Kaiso an interesting candidate for a downstream effector of cadherin and/or p120 signaling.

ACKNOWLEDGMENTS

The pGBT9-BCL-6 and pcDNA3-BCL-6 constructs were kind gifts from Dominic Leprince. pACTII-PLZF was a kind gift from Arthur Zelent.

This work was supported by a Center grant from the National Cancer Institute (CA 68485) and NIH grant CA 55724 to A.B.R. J.M.D. is a recipient of the Natural Science and Engineering Research Council of Canada Postdoctoral Fellowship.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.