8
Views
44
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Roles of Transcription Factor Mot3 and Chromatin in Repression of the Hypoxic Gene ANB1 in Yeast

, , , &
Pages 7088-7098 | Received 10 May 2000, Accepted 03 Jul 2000, Published online: 28 Mar 2023
 

Abstract

The hypoxic genes of Saccharomyces cerevisiae are repressed by a complex consisting of the aerobically expressed, sequence-specific DNA-binding protein Rox1 and the Tup1-Ssn6 general repressors. The regulatory region of one well-studied hypoxic gene,ANB1, is comprised of two operators, OpA and OpB, each of which has two strong Rox1 binding sites, yet OpA represses transcription almost 10 times more effectively than OpB. We show here that this difference is due to the presence of a Mot3 binding site in OpA. Mutations in this site reduced OpA repression to OpB levels, and the addition of a Mot3 binding site to OpB enhanced repression. Deletion of the mot3 gene also resulted in reduced repression of ANB1. Repression of two other hypoxic genes in which Mot3 sites were associated with Rox1 sites was reduced in the deletion strain, but other hypoxic genes were unaffected. In addition, the mot3Δ mutation caused a partial derepression of the Mig1–Tup1-Ssn6-repressed SUC2 gene, but not the α2–Mcm1–Tup1-Ssn6-repressed STE2 gene. The Mot3 protein was demonstrated to bind to the ANB1 OpA in vitro. Competition experiments indicated that there was no interaction between Rox1 and Mot3, indicating that Mot3 functions either in Tup1-Ssn6 recruitment or directly in repression. A great deal of evidence has accumulated suggesting that the Tup1-Ssn6 complex represses transcription through both nucleosome positioning and a direct interaction with the basal transcriptional machinery. We demonstrate here that under repressed conditions a nucleosome is positioned over the TATA box in the wild-type ANB1promoter. This nucleosome was absent in cells carrying arox1, tup1, or mot3 deletion, all of which cause some degree of derepression. Interestingly, however, this positioned nucleosome was also lost in a cell carrying a deletion of the N-terminal coding region of histone H4, yet ANB1expression remained fully repressed. A similar deletion in the gene for histone H3, which had no effect on repression, had only a minor effect on the positioned nucleosome. These results indicate that the nucleosome phasing on the ANB1 promoter caused by the Rox1–Mot3–Tup1-Ssn6 complex is either completely redundant with a chromatin-independent repression mechanism or, less likely, plays no role in repression at all.

ACKNOWLEDGMENTS

This work was supported by grant GM26061 from the National Institutes of Health.

We thank Fred Winston for the MOT3-expressing plasmid and Charles Lowry for providing the information about the role of Mot3 in ANB1 repression.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.