21
Views
38
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Dissection of Ras-Dependent Signaling Pathways Controlling Aggressive Tumor Growth of Human Fibrosarcoma Cells: Evidence for a Potential Novel Pathway

, , &
Pages 9294-9306 | Received 01 Jun 2000, Accepted 18 Sep 2000, Published online: 28 Mar 2023
 

Abstract

Activation of multiple signaling pathways is required to trigger the full spectrum of in vitro and in vivo phenotypic traits associated with neoplastic transformation by oncogenic Ras. To determine which of these pathways are important for N-ras tumorigenesis in human cancer cells and also to investigate the possibility of cross talk among the pathways, we have utilized a human fibrosarcoma cell line (HT1080), which contains an endogenous mutated allele of the N-rasgene, and its derivative (MCH603c8), which lacks the mutant N-ras allele. We have stably transfected MCH603c8 and HT1080 cells with activating or dominant-negative mutant cDNAs, respectively, of various components of the Raf, Rac, and RhoA pathways. In previous studies with these cell lines we showed that loss of mutant Ras function results in dramatic changes in the in vitro phenotypic traits and conversion to a weakly tumorigenic phenotype in vivo. We report here that only overexpression of activated MEK contributed significantly to the conversion of MCH603c8 cells to an aggressive tumorigenic phenotype. Furthermore, we have demonstrated that blocking the constitutive activation of the Raf-MEK, Rac, or RhoA pathway alone is not sufficient to block the aggressive tumorigenic phenotype of HT1080, despite affecting a number of in vitro-transformed phenotypic traits. We have also demonstrated the possibility of bidirectional cross talk between the Raf-MEK-ERK pathway and the Rac-JNK or RhoA pathway. Finally, overexpression of activated MEK in MCH603c8 cells appears to result in the activation of an as-yet-unidentified target(s) that is critical for the aggressive tumorigenic phenotype.

ACKNOWLEDGMENTS

We thank M. Karin, R. Triesman, and J. Collard for gifts of plasmids. We also thank U. Bengtsson for her excellent technical assistance. We are grateful to Terje Johansen for insightful comments.

These studies were supported by NIH grant CA-69515 awarded to E.J.S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.