26
Views
70
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activation of Protein Kinase Cζ Induces Serine Phosphorylation of VAMP2 in the GLUT4 Compartment and Increases Glucose Transport in Skeletal Muscle

, , , , , & show all
Pages 7852-7861 | Received 14 Feb 2001, Accepted 20 Aug 2001, Published online: 28 Mar 2023
 

Abstract

Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKCζ in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKCζ to associate specifically with the GLUT4 compartments and that PKCζ together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKCζ and GLUT4 recycled independently of one another. To further establish the importance of PKCζ in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKCζ (DNPKCζ) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKCζ was associated with a marked increase in the activity of this isoform. The overexpressed, active PKCζ coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKCζ caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKCζ induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKCζ disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKCζ regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.

ACKNOWLEDGEMENTS

This work was supported in part by the Sorrell Foundation, the Ben and Effie Raber Research Fund, the Harvett-Aviv Neuroscience Research Fund, and a grant from the Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities). S.R.S. is the incumbent of the Louis Fisher Chair in Cellular Pathology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.