18
Views
131
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Myogenic Akt Signaling Regulates Blood Vessel Recruitment during Myofiber Growth

, , , , , , , & show all
Pages 4803-4814 | Received 22 Jan 2002, Accepted 25 Mar 2002, Published online: 27 Mar 2023
 

Abstract

Blood vessel recruitment is an important feature of normal tissue growth. Here, we examined the role of Akt signaling in coordinating angiogenesis with skeletal muscle hypertrophy. Hypertrophy of C2C12 myotubes in response to insulin-like growth factor 1 or insulin and dexamethasone resulted in a marked increase in the secretion of vascular endothelial growth factor (VEGF). Myofiber hypertrophy and hypertrophy-associated VEGF synthesis were specifically inhibited by the transduction of a dominant-negative mutant of the Akt1 serine-threonine protein kinase. Conversely, transduction of constitutively active Akt1 increased myofiber size and led to a robust induction of VEGF protein production. Akt-mediated control of VEGF expression occurred at the level of transcription, and the hypoxia-inducible factor 1 regulatory element was dispensable for this regulation. The activation of Akt1 signaling in normal mouse gastrocnemius muscle was sufficient to promote myofiber hypertrophy, which was accompanied by an increase in circulating and tissue-resident VEGF levels and high capillary vessel densities at focal regions of high Akt transgene expression. In a rabbit hind limb model of vascular insufficiency, intramuscular activation of Akt1 signaling promoted collateral and capillary vessel formation and an accompanying increase in limb perfusion. These data suggest that myogenic Akt signaling controls both fiber hypertrophy and angiogenic growth factor synthesis, illustrating a mechanism through which blood vessel recruitment can be coupled to normal tissue growth.

This work was supported in part by NIH grants HD-23681, HL-50692, AR-40197, AG-15052, and AG-17241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.