39
Views
272
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Critical Role of Histone Methylation in Tumor Suppressor Gene Silencing in Colorectal Cancer

, &
Pages 206-215 | Received 28 Aug 2002, Accepted 01 Oct 2002, Published online: 27 Mar 2023
 

Abstract

The mechanism of DNA hypermethylation-associated tumor suppressor gene silencing in cancer remains incompletely understood. Here, we show by chromatin immunoprecipitation that for three genes (P16, MLH1, and the O6-methylguanine-DNA methyltransferase gene, MGMT), histone H3 Lys-9 methylation directly correlates and histone H3 Lys-9 acetylation inversely correlates with DNA methylation in three neoplastic cell lines. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) resulted in moderately increased Lys-9 acetylation at silenced loci with no effect on Lys-9 methylation and minimal effects on gene expression. By contrast, treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5Aza-dC) rapidly reduced Lys-9 methylation at silenced loci and resulted in reactivation for all three genes. Combined treatment with 5Aza-dC and TSA was synergistic in reactivating gene expression through simultaneous effects on Lys-9 methylation and acetylation, which resulted in a robust increase in the ratio of Lys-9 acetylated and methylated histones at loci showing dense DNA methylation. By contrast to Lys-9, histone H3 Lys-4 methylation inversely correlated with promoter DNA methylation, was not affected by TSA, and was increased moderately at silenced loci by 5Aza-dC. Our results suggest that reduced H3 Lys-4 methylation and increased H3 Lys-9 methylation play a critical role in the maintenance of promoter DNA methylation-associated gene silencing in colorectal cancer.

ACKNOWLEDGMENTS

Yutaka Kondo is supported by the Yasuda Medical Research Foundation and the Nitto Foundation in Japan. We thank Sharon Dent and Madelene Coombes (M. D. Anderson Cancer Center) for helpful discussion and technical assistance.

This work was supported by a Research Grant from the American Cancer Society (RPG9909801MGO) and by the George and Barbara Bush Endowment for Innovative Cancer Research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.