83
Views
328
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Control of the Replicative Life Span of Human Fibroblasts by p16 and the Polycomb Protein Bmi-1

, , , , , , , , & show all
Pages 389-401 | Received 20 Aug 2002, Accepted 30 Sep 2002, Published online: 27 Mar 2023
 

Abstract

The polycomb protein Bmi-1 represses the INK4a locus, which encodes the tumor suppressors p16 and p14ARF. Here we report that Bmi-1 is downregulated when WI-38 human fibroblasts undergo replicative senescence, but not quiescence, and extends replicative life span when overexpressed. Life span extension by Bmi-1 required the pRb, but not p53, tumor suppressor protein. Deletion analysis showed that the RING finger and helix-turn-helix domains of Bmi-1 were required for life span extension and suppression of p16. Furthermore, a RING finger deletion mutant exhibited dominant negative activity, inducing p16 and premature senescence. Interestingly, presenescent cultures of some, but not all, human fibroblasts contained growth-arrested cells expressing high levels of p16 and apparently arrested by a p53- and telomere-independent mechanism. Bmi-1 selectively extended the life span of these cultures. Low O2 concentrations had no effect on p16 levels or life span extension by Bmi-1 but reduced expression of the p53 target, p21. We propose that some human fibroblast strains are more sensitive to stress-induced senescence and have both p16-dependent and p53/telomere-dependent pathways of senescence. Our data suggest that Bmi-1 extends the replicative life span of human fibroblasts by suppressing the p16-dependent senescence pathway.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (AG09909 to J.C. and AG16851 to G.P.D.) and startup funds from the Cancer Center, New England Medical Center, Boston, Mass. (G.P.D.).

We thank Miguel Rubio for providing near-senescent 82-6 cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.