47
Views
188
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Heart and Liver Defects and Reduced Transforming Growth Factor β2 Sensitivity in Transforming Growth Factor β Type III Receptor-Deficient Embryos

, , , , , , , , & show all
Pages 4371-4385 | Received 16 Sep 2002, Accepted 19 Mar 2003, Published online: 27 Mar 2023
 

Abstract

The type III transforming growth factor β (TGFβ) receptor (TβRIII) binds both TGFβ and inhibin with high affinity and modulates the association of these ligands with their signaling receptors. However, the significance of TβRIII signaling in vivo is not known. In this study, we have sought to determine the role of TβRIII during development. We identified the predominant expression sites of ΤβRIII mRNA as liver and heart during midgestation and have disrupted the murine TβRIII gene by homologous recombination. Beginning at embryonic day 13.5, mice with mutations in ΤβRIII developed lethal proliferative defects in heart and apoptosis in liver, indicating that TβRIII is required during murine somatic development. To assess the effects of the absence of TβRIII on the function of its ligands, primary fibroblasts were generated from TβRIII-null and wild-type embryos. Our results indicate that TβRIII deficiency differentially affects the activities of TGFβ ligands. Notably, TβRIII-null cells exhibited significantly reduced sensitivity to TGFβ2 in terms of growth inhibition, reporter gene activation, and Smad2 nuclear localization, effects not observed with other ligands. These data indicate that TβRIII is an important modulator of TGFβ2 function in embryonic fibroblasts and that reduced sensitivity to TGFβ2 may underlie aspects of the TβRIII mutant phenotype.

ACKNOWLEDGMENTS

This work was supported in part by Public Health Service fellowship F32 CA90034 (K.L.S.) from the National Cancer Institute and by project grants from the Australian National Health & Medical Research Council (164815 to K.L.S. and 164812 to H.-J.Z.).

We thank A. W. Burgess for critical reading and support, Helen Abud for helpful advice on PCNA and caspase immunohistochemistry, X. F. Wang for the gift of the rat TβRIII cDNA, and A. Moustakas for pGL3-(CAGA)12-Luc reporter. We also thank the Ludwig Institute animal facility staff for animal husbandry, Janna Stickland for help with photography, and Valerie Feakes for histological sectioning.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.