11
Views
31
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Transcriptional Program of Apoptosis Induction following Interleukin 2 Deprivation: Identification of RC3, a Calcium/Calmodulin Binding Protein, as a Novel Proapoptotic Factor

&
Pages 4532-4541 | Received 17 Oct 2002, Accepted 07 Apr 2003, Published online: 27 Mar 2023
 

Abstract

Apoptosis of mature T lymphocytes preserves immune system homeostasis by counteracting transient increases in T-cell number. This process is regulated, at least in part, by the cytokine interleukin 2 (IL-2): T cells deprived of IL-2 undergo apoptosis. The mechanism of apoptosis induction by IL-2 deprivation remains to be determined but is known to require RNA synthesis, implying the existence of transcriptionally activated genes whose products induce cell death. To identify such genes, we have performed expression profiling in IL-2-dependent T cells following cytokine deprivation. Our results reveal an intricate transcriptional program entailing the induction of known proapoptotic factors and the simultaneous repression of known antiapoptotic factors. Surprisingly, one gene whose transcription substantially increased was RC3 (also called neurogranin), which encodes a calmodulin binding protein thought to be a neural-specific factor involved in learning and memory. We show that ectopic expression of RC3 in IL-2-dependent T cells increases the intracellular Ca2+ concentration and induces apoptosis even in the presence of cytokine. Buffering the Ca2+ increase with the cytoplasmic Ca2+ chelator BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N1,N-tetraacetic acid] blocks RC3-induced apoptosis, indicating that the rise in intracellular Ca2+ is required for apoptotic death. RC3 mutants unable to bind calmodulin fail to increase intracellular Ca2+ levels and to induce apoptosis. Based upon these results, we propose that IL-2 deprivation raises the level of RC3 and other apoptotic factors, which induce apoptosis by increasing the intracellular Ca2+ concentration.

ACKNOWLEDGMENTS

We thank J. G. Sutcliffe for the RC3 cDNA and antibody, D. Storm for RC3 mutants, C. Sagerstorm for help with the microscopy, A. Earhardt and D. Lambright for help with the spectrofluorometry, the University of Massachusetts Medical School Center for AIDS Research (CFAR) for human peripheral blood lymphocytes, P. Furcinitti for help with the Ca2+ single-cell imaging, members of our laboratory for helpful discussions and comments on the manuscript, and S. Evans for editorial assistance.

This work was supported in part by an NIH grant (to M.R.G.) and by the Leukemia and Lymphoma Society (to L.R.D.). M.R.G. is an investigator of the Howard Hughes Medical Institute.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.