4
Views
21
CrossRef citations to date
0
Altmetric
Signal Transduction

Epidermal Growth Factor-Dependent Phosphorylation of the GGA3 Adaptor Protein Regulates Its Recruitment to Membranes

, &
Pages 7988-8000 | Received 11 Feb 2005, Accepted 25 Jun 2005, Published online: 27 Mar 2023
 

Abstract

The Golgi-localized, Gamma-ear-containing, Arf-binding (GGA) proteins are monomeric clathrin adaptors that mediate the sorting of transmembrane cargo at the trans-Golgi network and endosomes. Here we report that one of these proteins, GGA3, becomes transiently phosphorylated upon activation of the epidermal growth factor (EGF) receptor. This phosphorylation takes place on a previously unrecognized site in the “hinge” segment of the protein, S368, and is strictly dependent on the constitutive phosphorylation of another site, S372. The EGF-induced phosphorylation of S368 does not require internalization of the EGF receptor or association of GGA3 with membranes. This phosphorylation can be blocked by inhibitors of both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways that function downstream of the activated EGF receptor. Phosphorylation of GGA3 on S368 causes an increase in the hydrodynamic radius of the protein, indicating a transition to a more asymmetric shape. Mutation of S368 and S372 to a phosphomimic aspartate residue decreases the association of GGA3 with membranes. These observations indicate that EGF signaling elicits phosphorylation events that regulate the association of GGA3 with organellar membranes.

ACKNOWLEDGMENTS

We thank X. Zhu for excellent technical assistance and Y. Wakabayashi for helpful discussions. We also thank S. Schmid, J. Lippincott-Schwartz, M. S. Robinson, and D. Brooks for kind gifts of reagents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.