60
Views
168
CrossRef citations to date
0
Altmetric
Intracellular Trafficking

Shuttling Mechanism of Peroxisome Targeting Signal Type 1 Receptor Pex5: ATP-Independent Import and ATP-Dependent Export

&
Pages 10822-10832 | Received 23 Feb 2005, Accepted 26 Sep 2005, Published online: 27 Mar 2023
 

Abstract

Peroxisomal matrix proteins are posttranslationally imported into peroxisomes with the peroxisome-targeting signal 1 receptor, Pex5. The longer isoform of Pex5, Pex5L, also transports Pex7-PTS2 protein complexes. After unloading the cargoes, Pex5 returns to the cytosol. To address molecular mechanisms underlying Pex5 functions, we constructed a cell-free Pex5 translocation system with a postnuclear supernatant fraction from CHO cell lines. In assays using the wild-type CHO-K1 cell fraction, 35S-labeled Pex5 was specifically imported into and exported from peroxisomes with multiple rounds. 35S-Pex5 import was also evident using peroxisomes isolated from rat liver. ATP was not required for 35S-Pex5 import but was indispensable for export. 35S-Pex5 was imported neither to peroxisome remnants from RING peroxin-deficient cell mutants nor to those from pex14 cells lacking a Pex5-docking site. In contrast, 35S-Pex5 was imported into the peroxisome remnants of PEX1-, PEX6-, and PEX26-defective cell mutants, including those from patients with peroxisome biogenesis disorders, from which, however, 35S-Pex5 was not exported, thereby indicating that Pex1 and Pex6 of the AAA ATPase family and their recruiter, Pex26, were essential for Pex5 export. Moreover, we analyzed the 35S-Pex5-associated complexes on peroxisomal membranes by blue-native polyacrylamide gel electrophoresis. 35S-Pex5 was in two distinct, 500- and 800-kDa complexes comprising different sets of peroxins, such as Pex14 and Pex2, implying that Pex5 transited between the subcomplexes. Together, results indicated that Pex5 most likely enters peroxisomes, changes its interacting partners, and then exits using ATP energy.

ACKNOWLEDGMENTS

We thank K. Okumoto for construction of the His6-Flag-PEX5L plasmid, U. K. Rhee and C. M. Koeller for technical advice on BN-PAGE, M. Nishi for preparing the figures, and many members of the Fujiki laboratory for discussion.

This work was supported in part by a SORST grant (to Y.F.) from the Science and Technology Corporation of Japan; Grants-in-Aid for Scientific Research (12308033, 12557017, 12206069, 13206060, 14037253, 15032242, and 15207014 to Y.F.), a grant from the National Project on Protein Structural and Functional Analyses (to Y.F.) and The 21st Century COE Program from The Ministry of Education, Culture, Sports, Science, and Technology of Japan; and a grant from the Japan Foundation for Applied Enzymology. N.M. is a Research Fellow of the Japan Society for the Promotion of Science.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.