41
Views
162
CrossRef citations to date
0
Altmetric
Signal Transduction

Acute Tumor Necrosis Factor Alpha Signaling via NADPH Oxidase in Microvascular Endothelial Cells: Role of p47phox Phosphorylation and Binding to TRAF4

, , &
Pages 2320-2330 | Received 03 Sep 2004, Accepted 07 Dec 2004, Published online: 27 Mar 2023
 

Abstract

Tumor necrosis factor alpha (TNF-α) receptor-associated factors (TRAFs) play important roles in TNF-α signaling by interacting with downstream signaling molecules, e.g., mitogen-activated protein kinases (MAPKs). However, TNF-α also signals through reactive oxygen species (ROS)-dependent pathways. The interrelationship between these pathways is unclear; however, a recent study suggested that TRAF4 could bind to the NADPH oxidase subunit p47phox. Here, we investigated the potential interaction between p47phox phosphorylation and TRAF4 binding and their relative roles in acute TNF-α signaling. Exposure of human microvascular endothelial cells (HMEC-1) to TNF-α (100 U/ml; 1 to 60 min) induced rapid (within 5 min) p47phox phosphorylation. This was paralleled by a 2.7- ± 0.5-fold increase in p47phox-TRAF4 association, membrane translocation of p47phox-TRAF4, a 2.3- ± 0.4-fold increase in p47phox-p22phox complex formation, and a 3.2- ± 0.2-fold increase in NADPH-dependent O2 production (all P < 0.05). TRAF4-p47phox binding was accompanied by a progressive increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38MAPK activation, which was inhibited by an O2 scavenger, tiron. TRAF4 predominantly bound the phosphorylated form of p47phox, in a protein kinase C-dependent process. Knockdown of TRAF4 expression using siRNA had no effect on p47phox phosphorylation or binding to p22phox but inhibited TNF-α-induced ERK1/2 activation. In coronary microvascular EC from p47phox−/− mice, TNF-α-induced NADPH oxidase activation, ERK1/2 activation, and cell surface intercellular adhesion molecule 1 (ICAM-1) expression were all inhibited. Thus, both p47phox phosphorylation and TRAF4 are required for acute TNF-α signaling. The increased binding between p47phox and TRAF4 that occurs after p47phox phosphorylation could serve to spatially confine ROS generation from NADPH oxidase and subsequent MAPK activation and cell surface ICAM-1 expression in EC.

ACKNOWLEDGMENTS

This work was supported by British Heart Foundation (BHF) Program Grant RG/98008 and BHF project grant PG/02/112. L.M.F. was funded by a Wellcome Trust Vacation Scholarship. A.M.S. holds the BHF Chair of Cardiology in King's College London.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.