14
Views
19
CrossRef citations to date
0
Altmetric
Article

The Proline-Histidine-Rich CDK2/CDK4 Interaction Region of C/EBPα Is Dispensable for C/EBPα-Mediated Growth Regulation In Vivo

, , , , , , , , & show all
Pages 1028-1037 | Received 22 Jun 2005, Accepted 04 Nov 2005, Published online: 27 Mar 2023
 

Abstract

The C/EBPα transcription factor regulates growth and differentiation of several tissues during embryonic development. Several hypotheses as to how C/EBPα inhibits cellular growth in vivo have been derived, mainly from studies of tissue culture cells. In fetal liver it has been proposed that a short, centrally located, 15-amino-acid proline-histidine-rich region (PHR) of C/EBPα is responsible for the growth-inhibitory function of the protein through its ability to interact with CDK2 and CDK4, thereby inhibiting their activities. Homozygous CebpaΔPHR/ΔPHR (ΔPHR) mice, carrying a modified cebpa allele lacking amino acids 180 to 194, were born at the Mendelian ratio, reached adulthood, and displayed no apparent adverse phenotypes. When fetal livers from the ΔPHR mice were analyzed for their expression of cell cycle markers, bromodeoxyuridine incorporation, cyclin-dependent kinase 2 kinase activity, and global gene expression, we failed to detect any cell cycle or developmental differences between the ΔPHR mice and their control littermates. These in vivo data demonstrate that any C/EBPα-mediated growth repression via the PHR as well as the basic region is dispensable for proper embryonic development of, and cell cycle control in, the liver. Surprisingly, control experiments performed in C/EBPα null fetal livers yielded similar results.

This work was supported by the Danish Medical Research Council, The Danish Cancer Society, and the Association for International Cancer Research.

We thank Daniel Tenen for providing us with the C/EBPα knockout line.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.