12
Views
33
CrossRef citations to date
0
Altmetric
Article

AP-1 Differentially Expressed Proteins Krp1 and Fibronectin Cooperatively Enhance Rho-ROCK-Independent Mesenchymal Invasion by Altering the Function, Localization, and Activity of Nondifferentially Expressed Proteins

, , , , , , , , & show all
Pages 1480-1495 | Received 01 Aug 2005, Accepted 01 Dec 2005, Published online: 27 Mar 2023
 

Abstract

The transcription factor AP-1, which is composed of Fos and Jun family proteins, plays an essential role in tumor cell invasion by altering gene expression. We report here that Krp1, the AP-1 up-regulated protein that has a role in pseudopodial elongation in v-Fos-transformed rat fibroblast cells, forms a novel interaction with the nondifferentially expressed actin binding protein Lasp-1. Krp1 and Lasp-1 colocalize with actin at the tips of pseudopodia, and this localization is maintained by continued AP-1 mediated down-regulation of fibronectin that in turn suppresses integrin and Rho-ROCK signaling and allows pseudopodial protrusion and mesenchyme-like invasion. Mutation analysis of Lasp-1 demonstrates that its SH3 domain is necessary for pseudopodial extension and invasion. The results support the concept of an AP-1-regulated multigenic invasion program in which proteins encoded by differentially expressed genes direct the function, localization, and activity of proteins that are not differentially expressed to enhance the invasiveness of cells.

Supplemental material for this article may be found at http://mcb.asm.org/.

We thank J. Winnie and L. Meagher for their technical assistance and P. McHardy and M. O'Prey for assistance with microscopy.

We gratefully acknowledge Cancer Research U.K. for their financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.