6
Views
7
CrossRef citations to date
0
Altmetric
Gene Expression

Multiple DNA-Binding Factors Interact with Overlapping Specificities at the Aryl Hydrocarbon Response Element of the Cytochrome P450IA1 Gene

, , &
Pages 6408-6416 | Received 10 May 1990, Accepted 18 Sep 1990, Published online: 31 Mar 2023
 

Abstract

Three nuclear factors, the Ah receptor, XF1, and XF2, bind sequence specifically to the Ah response elements or xenobiotic response elements (XRFs) of the cytochrome P450IA1 (P450c) gene. The interactions of these factors with the Ah response element XRE1 were compared by three independent methods, methylation interference footprinting, orthophenanthroline-Cu+ footprinting, and mobility shift competition experiments, using a series of synthetic oligonucleotides with systematic alterations in the XRE core sequence. These studies established the following (i) all three factors interact sequence specifically with the core sequence of XRE1; (ii) the pattern of contacts made with this sequence by the Ah receptor are different from those made by XF1 and XF2; and (iii) although XF1 and XF2 can be distinguished by the mobility shift assay, the sequence specificities of their interactions with XRE1 are indistinguishable. Further characterization revealed the following additional differences among these three factors: (i) XF1 and XF2 could be extracted from nuclei under conditions quite different from those required for extraction of the Ah receptor; (ii) XF1 and XF2 were present in the nuclei of untreated cells and did not respond to polycyclic compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-napthoflavone, while nuclear Ah receptor was undetectable in untreated cells and rapidly increased in response to TCDD; (iii) inhibition of protein synthesis did not affect the TCDD-induced appearance of the Ah receptor but substantially decreased the constitutive activities of XF1 and XF2, suggesting that the Ah receptor must be present in untreated cells in an inactive form that can be rapidly activated by polycyclic compounds, while the constitutive expression of XF1 and XF2 depends on the continued synthesis of a relatively unstable protein; (iv) the receptor-deficient and nuclear translocation-defective mutants of the hepatoma cell line Hepal, which are known to lack nuclear Ah receptor, expressed normal levels of XF1 and XF2, suggesting that the former factor is genetically distinct from the latter two; and (v) a divalent metal ion, probably Zn2+, is known to be an essential cofactor for the Ah receptor but was not required for the DNA-binding activities of XF1 and XF2. Together, these findings indicate that the Ah receptor is distinct from XF1 and XF2, while the latter two activities may be related. Because the DNA-binding domains of these three factors overlap substantially, their binding to XREs is probably mutually exclusive, which suggests that the interplay of these factors at Ah response elements may be important to the regulation of CYP1A1 gene transcription. The results of preliminary transfection experiments with constructs harboring XREs upstream of the chloramphenicol acetyltransferase gene driven by a minimal simian virus 40 promoter are presented that are consistent with this hypothesis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.