0
Views
10
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Carboxy-Terminal Domains of erbB-2 and Epidermal Growth Factor Receptor Exert Different Regulatory Effects on Intrinsic Receptor Tyrosine Kinase Function and Transforming Activity

, , , , &
Pages 2749-2756 | Received 05 Sep 1989, Accepted 08 Mar 1990, Published online: 01 Apr 2023
 

Abstract

The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2∆1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-γ. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-21050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.