2
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Evidence for Torsional Stress in Transcriptionally Activated Chromatin

&
Pages 6128-6138 | Received 28 Jan 1991, Accepted 03 Sep 1991, Published online: 31 Mar 2023
 

Abstract

The existence of torsional stress in eukaryotic chromatin has been controversial. To determine whether it could be detected, we probed the structure of an alternating AT tract. These sequences adopt cruciform geometry when the DNA helix is torsionally strained by negative supercoiling. The single-strand-specific nuclease P1 was used to determine the structure of an alternating AT sequence upstream of the Xenopus β-globin gene when assembled into chromatin in microinjected Xenopus oocytes. The pattern of cleavage by P1 nuclease strongly suggests that the DNA in this chromatin template is under torsional stress. The cruciform was detected specifically in the most fully reconstituted templates at later stages of chromatin assembly, suggesting that negative supercoiling is associated with chromatin maturation. Furthermore, the number of torsionally strained templates increased dramatically at the time when transcription of assembled chromatin templates began. Transcription itself has been shown to induce supercoiling, but the requisite negative supercoiling for cruciform extrusion by (AT)n in oocytes was not generated in this way since the characteristic P1 cutting pattern was retained even when RNA polymerase elongation was blocked with α-amanitin. Thus, torsional stress is associated with transcriptional activation of chromatin templates in the absence of ongoing transcription.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.