1
Views
4
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Sequence Requirements for Transcriptional Arrest in Exon 1 of the Human Adenosine Deaminase Gene

, , , &
Pages 6248-6256 | Received 14 Jun 1991, Accepted 25 Sep 1991, Published online: 31 Mar 2023
 

Abstract

We have previously demonstrated that a transcriptional arrest site exists in exon 1 of the human adenosine deaminase (ADA) gene and that this site may play a role in ADA gene expression (Z. Chen, M. L. Harless, D. A. Wright, and R. E. Kellems, Mol. Cell. Biol. 10:4555-4564, 1990). Sequences involved in this process are not known precisely. To further define the template requirements for transcriptional arrest within exon 1 of the human ADA gene, various ADA templates were constructed and their abilities to confer transcriptional arrest were determined following injection into Xenopus oocytes. The exon 1 transcriptional arrest signal functioned downstream of several RNA polymerase II promoters and an RNA polymerase ΠΙ promoter, implying that the transcriptional arrest site in exon 1 of the ADA gene is promoter independent. We identified a 43-bp DNA fragment which functions as a transcriptional arrest signal. Additional studies showed that the transcriptional arrest site functioned only in the naturally occurring orientation. Therefore, we have identified a 43-bp DNA fragment which functions as a transcriptional arrest signal in an orientation-dependent and promoter-independent manner. On the basis of our findings, we hypothesize that tissue-specific expression of the ADA gene is governed by factors that function as antiterminators to promote transcriptional readthrough of the exon 1 transcriptional arrest site.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.