3
Views
0
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Colony-Stimulating Factor 1 Expression Is Down-Regulated during the Adipocyte Differentiation of H-1/A Marrow Stromal Cells and Induced by Cachectin/Tumor Necrosis Factor

, , , , , & show all
Pages 920-927 | Received 17 Jul 1990, Accepted 20 Nov 1990, Published online: 31 Mar 2023
 

Abstract

We isolated clonal sublines of the established mouse marrow stromal cell line, H-1. These clonal sublines underwent differentiation into adipocytes in various degrees. One subline, H-1/A, underwent adipocyte differentiation after confluence, while another subline, H-1/D, did not differentiate. In H-1/A cells, the 4.5- and 2.5-kb major mRNA species of colony-stimulating factor 1 (CSF-1) were expressed before differentiation and were down-regulated at a posttranscriptional level during the differentiation of H-1/A cells. The down-regulation of the CSF-1 gene was not a result of arrested cellular growth, because no down-regulation was detected in the nondifferentiating sister line, H-1/D. This down-regulation appeared to be an early event in differentiation. Cachectin/tumor necrosis factor transiently induced the expression of CSF-1 and inhibited the differentiation of H-1/A cells into adipocytes. This induced expression of CSF-1 was due to an increased rate of transcription.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.