2
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Degradation of a Developmentally Regulated mRNA in Xenopus Embryos Is Controlled by the 3′ Region and Requires the Translation of Another Maternal mRNA

, , &
Pages 3115-3124 | Received 11 Oct 1990, Accepted 15 Mar 1991, Published online: 01 Apr 2023
 

Abstract

By injecting the appropriately constructed plasmids into one-cell Xenopus embryos, we determined that the 3′ region of the maternal Xenopus Eg2 mRNA confers instability on the chimeric mRNA transcribed from these plasmids. This instability, like that of the maternal Eg2 transcript, was abolished by treatment of the embryos with cycloheximide. Analysis of the polysome distribution of the maternal Eg2 mRNA in cycloheximide-treated and untreated embryos showed that Eg2 mRNA was released from polysomes after fertilization and that the stabilization caused by cycloheximide treatment was not due to a reloading of ribosomes onto the mRNA. Insertion of a stable hairpin loop (ΔG = −50 kcal/mol) 5′ to the reporter gene in the injected plasmid caused a 10- to 20-fold decrease in translation from the transcribed mRNAs. This decrease in translation did not abolish the instability conferred by the 3′ Eg2 region. Therefore, the degradation of these chimeric mRNAs in Xenopus embryos requires the translation of another maternal mRNA coding for a trans-acting factor involved in mRNA degradation. Further restriction of the 3′ Eg2 region, placed 3′ to the reporter gene, showed that a as-acting instability-conferring sequence is contained in a 497-nucleotide fragment.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.